Intelligence artificielle et transport aérien, état des lieux et perspectives

S’il est difficile, de l’avis même des experts, de définir ce que c’est que l’intelligence artificielle (IA), il n’en demeure pas moins vrai qu’on admet généralement le fait que l’intelligence artificielle est une science qui consiste à simuler l’intelligence humaine par le développement d’algorithmes, de modèles et de programmes informatiques capables de doter les machines de fonctions cognitives.
Les fonctions cognitives sont, pour les plus importantes : La perception, la représentation symbolique, la mémoire, le raisonnement logique ainsi que l’orientation et le déplacement dans l’espace. L’intelligence artificielle ne date pas d’aujourd’hui. En effet, le terme «intelligence artificielle» a vu le jour pour la première fois en 1956 lors de la fameuse conférence de Darthmouth. Cependant ce n’est qu’à partir de 2007 environ que des résultats spectaculaires ont pu être obtenus grâce à cette technologie, notamment dans le domaine de l’apprentissage automatique des machines.
L’apprentissage automatique des machines, connu sous le nom de Machine Learning, est une branche de l’IA qui part du principe que si on veut simuler l’intelligence humaine, il faut commencer par modéliser et simuler le processus d’apprentissage chez l’être humain. Un processus basé sur l’observation et l’imitation dans un premier temps, et la conceptualisation, la représentation, la contextualisation et l’attribution de sens (éthique, logique…) dans un deuxième temps. Avec évidemment des niveaux de performance qui diffèrent d’un être humain à un autre et une amélioration avec l’expérience.
En des termes simples, on peut dire que si l’informatique classique consiste à programmer les machines pour résoudre des problèmes (du simple calcul du modulo à la prévision longue échéance de phénomènes météorologiques complexes), l’IA, quant à elle, consiste à programmer les machines pour apprendre à résoudre les problèmes par un processus d’apprentissage similaire à celui des êtres humains.
L’apprentissage automatique a pu se développer dans les dernières années avec les résultats qu’on connaît, grâce à la combinaison de deux phénomènes. D’une part l’augmentation de la puissance des calculateurs et d’autre part la disponibilité d’une quantité sans précédent de données (Big Data).
En effet, les deux obstacles majeurs qui ont toujours ralenti le développement de l’apprentissage automatique des machines, et en particulier par les techniques des réseaux de neurones artificiels (Deep Learning), c’étaient le manque de données en nombre suffisant pour entraîner les algorithmes et une puissance de calcul suffisante pour optimiser des fonctions mathématiques appelées fonctions de coût qui manipulent des millions de paramètres/variables lorsqu’il s’agit d’applications comme la classification d’images, la reconnaissance vocale automatique, etc. Aujourd’hui, avec le Big Data, le cloud computing et prochainement les calculateurs quantiques, les obstacles au développement de l’apprentissage automatique des machines sont tombés et des intelligences artificielles sont aujourd’hui entraînées pour la conduite automatique des véhicules, la détection des cancers dans l’imagerie médicale, la prédiction du cours des actions en Bourse, la reconnaissance faciale de millions d’êtres humains, etc. avec des performances de plus en plus impressionnantes.
Applications de l’IA dans le secteur du transport aérien
Comme tous les secteurs d’activité économique, le secteur du transport aérien sera «touché» par l’intelligence artificielle ; comme il le fut d’ailleurs par l’informatique et l’Internet.
A cet effet, et lors de la 42ème assemblée générale de l’Organisation de l’aviation civile internationale (OACI), tenue cette année, le sujet a été évoqué à travers plusieurs working papers émanant de nombreux Etats qui ont incité l’OACI à réfléchir sur la politique à adopter pour se préparer à cette grande évolution technologique qui va impacter un secteur compliqué.
Compliqué car il est global et globalisé. La navigation aérienne internationale est une affaire mondiale.
Compliqué aussi car il compte des intervenants multiples et variés : les constructeurs d’aéronefs, les compagnies aériennes, les exploitants d’aéroports, les fournisseurs des services de la navigation (ANSPs), les gestionnaires des réseaux de routes aériennes (NM), sans oublier les autorités de régulation qui doivent veiller, dans chaque pays, au respect des normes et pratiques recommandées par l’OACI.
Compliqué enfin parce que le maître mot dans ce secteur est la garantie d’un niveau de sécurité «absolu», ce qui rend généralement le processus d’adoption des nouvelles technologies lent et fastidieux aussi bien d’un point de vue règlementaire qu’en termes de procédures de certification, de formation, de qualification et d’exploitation opérationnelle.
Compte tenu de ces considérations, les grands programmes mondiaux de modernisation du secteur du transport aérien, à savoir le Sesar Européen (Single Sky European ATM Research) et le NextGen Américain ont décidé d’aborder le sujet a travers un ensemble de projets exploratoires afin de mesurer l’apport de l’IA dans divers domaines liés au transport aérien, notamment la gestion du trafic et la gestion des opérations aéroportuaires.
Ainsi par exemple le projet Inuit (Interactive toolset for understanding trade-offs in ATM performance) du programme Sesar explore le potentiel des techniques d’analyse visuelle et de l’apprentissage machine pour identifier les causes-racines de l’inefficience des vols et pour modéliser les choix des compagnies aériennes a priori en termes de routes préférentielles en se basant sur les millions de données de vol enregistrées. Le but étant d’améliorer l’aspect prédictif du système afin de simplifier la gestion du réseau par anticipation
Le projet Malorca (Machine Learning of Speech Recognition Models for Controller Assistance) du même programme Sesar cherche à étudier, quant à lui, le potentiel des techniques de la reconnaissance vocal automatique (ASR) et de l’apprentissage machine pour automatiser un ensemble de tâches effectuées aujourd’hui par les contrôleurs aériens dans la gestion des opérations courantes afin de réduire le work-load et atténuer en conséquence les risques de sécurité liés à l’aspect «facteur humain».
Concernant la gestion des flux de passagers dans les aéroports, le projet «BigData4ATM» étudie la manière dont différentes données géolocalisées centrées sur les passagers peuvent être analysées et combinées avec des données plus traditionnelles sur la démographie, l’économie et le transport aérien, afin d’identifier les schémas de comportement des passagers, les temps de parcours porte à porte et les choix de mode de transport. Le projet explore également les applications de ces données et la manière dont elles pourraient être utilisées pour éclairer les processus de prise de décision ATM.
Toujours dans le cadre de la gestion des flux des passagers, des projets se concentrent aujourd’hui sur le développement de solutions de reconnaissance faciale connectées et intelligentes capables d’anticiper sur les contrôles de police en identifiant les individus suspects et les comportements nécessitant investigation.
Conclusion
Tous les projets cités plus haut, et bien d’autres encore, visent à proposer, par l’application des techniques de l’intelligence artificielle, de nouvelles perspectives, de nouvelles approches et, in fine, de nouvelles solutions pour améliorer la gestion du transport aérien dans un contexte caractérisé, d’une part, par la croissance continue du trafic (+5% annuel) avec les risques de saturation et de sécurité qui vont avec, et d’autre part, par l’augmentation des attentes des usagers en termes de qualité (retards) et de coût du service.
S’il est vrai que l’intelligence artificielle est aujourd’hui en phase de test, d’expérimentation et d’évaluation afin de démontrer son potentiel et son apport par rapport à ces problématiques, il n’en demeure pas moins vrai que tout indique que les choses vont aller beaucoup plus vite que prévu et que cette technologie sera très bientôt une réalité dans le monde du transport aérien en particulier et dans le monde industriel en général. A ce propos, il devient peut-être urgent de réfléchir sur une politique nationale intégrée en matière d’intelligence artificielle. En effet, étant donné l’impact économique et surtout social de cette technologie que d’aucuns se permettent déjà d’appeler la 4ème révolution industrielle, il importe de se doter d’une vision claire et des moyens adéquats pour atténuer les risques et saisir les opportunités qui vont certainement accompagner cette évolution majeure de l’humanité.
El Habib Birouk
Ingénieur à l’Office national des aéroports
Le 26/12/2019
Source web Par Aujourd'hui le Maroc
Les tags en relation
Les articles en relation

Royal Air Maroc rétablira progressivement les lignes aériennes annulées en période de Covid
En portant sa flotte à 200 avions, la compagnie aérienne nationale Royal Air Maroc vise à rétablir progressivement les lignes annulées auparavant. Actuelle...

Addou: «Le contrat-programme RAM-Etat sera signé avant la fin de l’année»
Plus de deux années après avoir soumis ses propositions à Abdelilah Benkirane, le président de la RAM nous déclare que la signature d’un contrat-programm...

7 dangers de l’intelligence artificielle
L'intelligence artificielle (IA) est une technologie émergente qui pourrait transformer le monde en améliorant la productivité, la créativité et la qua...

IA et enseignement supérieur au Maroc : enjeux et défis
Depuis son émergence, l’intelligence artificielle (IA) bouleverse en profondeur les modèles économiques et les modes de vie à l’échelle mondiale. Véri...

OpenAI : 400 millions d’utilisateurs et valorisation record
OpenAI, la start-up à l’origine du célèbre chatbot ChatGPT, revendique désormais plus de 400 millions d’utilisateurs dans le monde, un chiffre en hausse...

Le plus grand tunnel immergé du monde est déjà en cours de construction. Et il est construit sans
Parler de tech, ce n'est pas seulement parler de smartphones ou de TV 4K. Parfois, il y a de belles avancées technologiques dans la construction d'imme...

Le transport aérien prépare des mesures anti-coronavirus pour redécoller
Le transport aérien se prépare à la reprise avec des mesures sanitaires particulières. I Crédit photo Adobe Stock L’Iata travaille sur l'élaborat...

Transport aérien Air Arabia-Maroc relie Nador à Casablanca en A320
La connectivité aérienne Nador-Casablanca d'Air Arabia-Maroc, sera opéré avec un avion biréacteur de type Airbus A320 d’une capacité de 174 sièges....

Le Maroc, hub stratégique pour les minéraux critiques et la durabilité mondiale
La ministre de la Transition énergétique et du Développement durable, Leila Benali, a déclaré à Riyad que le Maroc est désormais une destination incontou...

Arabie Saoudite : 15 milliards $ pour devenir leader en IA
L'Arabie Saoudite ambitionne de devenir un pôle mondial de l'Intelligence Artificielle (IA). Dans le cadre de cet objectif, le pays prévoit des invest...

La Start-up d'Elon Musk, xAI, Valorisé à 24 Milliards de Dollars Après une Levée de Fonds de 6 M
La start-up xAI, fondée par Elon Musk et spécialisée dans l'intelligence artificielle, vient de lever 6 milliards de dollars supplémentaires, portant sa...

L’ONU adopte sa première résolution sur l'Intelligence Artificielle, une initiative conjointe du
L’Assemblée générale de l’ONU a approuvé à l'unanimité jeudi dernier la toute première résolution onusienne dédiée à l'Intelligence Artif...